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An internal model control (IMC) strategy for  nonlinear single-input single-output 
systems is proposed. The controller is designed to provide nominal performance, 
and a nonlinear filter is added to make the controller implementable and to account 
for  plant/model mismatch. An important advantage of the new approach is that 
the assumption of full-state feedback inherent in most input-output linearization 
schemes is eliminated. However, the proposed IMC strategy is restricted to open- 
loop stable systems with stable inverses. Under mild assumptions, the closed-loop 
system possesses the same stability, perfect control, and zero offset properties as 
linear IMC. Simulation results for  a continuous fermentor illustrate the advantages 
of the nonlinear IMC strategy. 

Introduction 
Internal model control (IMC) is a powerful controller design 

strategy for linear systems described by transfer function models 
(Morari and Zafiriou, 1989). For open-loop, stable systems, 
the IMC approach provides a very simple parameterization of 
all stabilizing controllers. The IMC factorization procedure 
provides valuable insights into the inherent control limitations 
presented by particular models. Due to the IMC structure, 
integral action is included implicitly in the controller. More- 
over, plant/model mismatch can be addressed via the design 
of a robustness filter. 

Unfortunately, virtually all real processes are nonlinear. 
Some are sufficiently linear in the region of operation so that 
conventional PID controllers provide adequate performance. 
But, for highly nonlinear processes, conventional feedback 
controllers must be detuned significantly to ensure stability. 

Therefore, performance is often severely degraded. Model- 
based control strategies for nonlinear processes usually require 
local linearization and linear controller design based on the 
linearized model. This approach, however, may not be suc- 
cessful when the process is highly nonlinear or deviates sig- 
nificantly from the operating point where the model was 
linearized. For batch and semibatch processes, it is difficult 
to define an operating point for linearization. Since reasonably 
accurate nonlinear models are available for a variety of proc- 
esses, control strategies in which the nonlinear process model 
serves as the basis for controller design can be expected to 
yield significantly improved performance. 

In this article, an IMC strategy for nonlinear single-input 
single-output (SISO) systems is proposed. Unlike existing non- 
linear controller design techniques that incorporate IMC con- 
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cepts, the new approach is a general extension of linear IMC 
to open-loop, stable, nonlinear systems with stable inverse. 
The nonlinear process model is used directly in the design of 
the controller, and a nonlinear filter is added t o  make the 
controller implementable and improve robustness. Unlike most 
input-output linearization techniques, full-state feedback is not 
required since the process model functions as an open-loop 
observer. If the model satisfies mild assumptions, the closed- 
loop system possesses the same stability, perfect control, and 
zero offset properties as linear IMC. A linear process model 
is used to  compare the new approach to  linear IMC, and 
extensions for nonlinear systems with disturbances are pro- 
posed. Simulation results for a continuous fermentor dem- 
onstrate that the nonlinear IMC strategy is superior to P I  
control and compares favorably to  exact linearization based 
on full-state feedback even if significant modeling errors are 
present. 

Existing Approaches to Nonlinear Internal Model 
Control 

The development of a general nonlinear extension of IMC 
poses serious difficulties due to  the inherent complexity of 
nonlinear systems. For instance, except for very simple SISO 
systems (Kravaris and Daoutidis, 1990), the IMC factorization 
procedure has no well-defined nonlinear analog. Also, very 
few tools exist for the design and analysis of robust nonlinear 
controllers. Furthermore, linear IMC is based on transfer func- 
tions models, while nonlinear systems are usually described by 
nonlinear state-space models. Despite these difficulties, several 
nonlinear controller design techniques that incorporate con- 
cepts from linear IMC have been developed recently. In this 
section, these design methods are reviewed, and it is shown 
that a general IMC design strategy for nonlinear systems has 
not yet been developed. Other types of nonlinear controller 
design strategies for process control have been reviewed by 
Kravaris and Kantor (1990a,b) and Henson and Seborg (1991). 

Economou et al. (1986) proposed an IMC strategy for open- 
loop, stable, nonlinear systems with stable inverses. Input- 
output operators were used to show that their nonlinear IMC 
technique satisfies the same stability, perfect control, and zero 
offset properties as linear IMC. The controller was based on  
the inverse of the nonlinear model, and a filter was added to  
account for input constraints and modeling errors. The stability 
of the model inverse was analyzed using the small gain theorem. 
Because the calculation of the required nonlinear gains is non- 
trivial (Nikolaou and Manousiouthakis, 1989), the stability 
theorems are difficult to  use in practice. Although an input- 
output approach was used for analysis, the only analytical 
technique investigated for construction of the model inverse 
was the state-space approach of Hirschorn (1979). However, 
the Hirschorn inverse is internally unstable due to  pole-zero 
cancellations at  the origin (Kravaris and Kantor, 1990a,b). 

Economou et al. (1986) augmented the nonlinear controller 
with a linear filter because design techniques for nonlinear 
filters that preserve the nominal stability and no offset prop- 
erties were not available. Because linear filters d o  not affect 
the stability of the controller, the resulting closed-loop per- 
formance was unacceptable. Hence, the model inverse was 
constructed using numerical procedures based on the contrac- 
tion mapping principle and Newton’s method. The Newton 

procedure was reliable and efficient, but requires the solution 
of a linear variational problem. This numerical approach to 
nonlinear IMC is, therefore, computationally-int ensive. More- 
over, analysis of the resulting iterative procedure is difficult 
(Economou and Morari, 1985; Li et al., 1990). Since disturb- 
ances were treated as modeling errors, no explicit techniques 
were proposed to  incorporate measured disturbances in a feed- 
forward/feedback control scheme. 

The nonlinear inferential control (NIC) stral egy proposed 
by Parrish and Brosilow (1986, 1988) is an exterrsion of linear 
inferential control (Joseph and Brosilow, 1978). As in other 
IMC approaches, the difference between the plant and model 
outputs is used as a feedback signal. An estimator provides 
the nonlinear controller with state and parameter estimates, 
and a linear filter is used to  define a reference trajectory for 
the closed-loop system. The most significant limitation of the 
NIC strategy is that very few quantitative design guidelines are 
provided for the controller and estimator. Additionally, dis- 
cretization is often required since a discrete-time approach is 
employed. The effects of model discretization on stability and 
performance were not reported. Despite these limitations, the 
NIC approach has been successfully applied tl:) several non- 
linear process models, including an open-loop, unstable, sty- 
rene polymerization reactor (Hidalgo and Brosilow. 1990). 

Calvet and Arkun (1988) used an IMC scheme to implement 
their state-space linearization approach for nonlinear systems 
with disturbances. A disadvantage of the state-space lineari- 
zation approach is that an artificial controlled output is in- 
troduced in the controller design procedure and cannot be 
specified a priori (Kantor and Kravaris, 1990a,b; Henson and 
Seborg, 1991). Another disadvantage of this method is that 
the nonlinear controller requires state feedback. An alternative 
IMC strategy for nonlinear systems has been proposed by 
Alvarez and Alvarez (1989). The tracking and regulation be- 
havior of the closed-loop system can be specified independently 
via two reference models. Hence, the approach is similar to 
the two-degree-of-freedom controller developed for linear IMC 
(Morari and Zafiriou, 1989). Additionally, state feedback is 
not required because the process model acts as an open-loop 
observer. However, a linear map between the setpoint and 
output is not usually obtained since an artificial output is 
controlled. Thus, it is difficult t o  design reference models to 
satisfy specific performance criteria. Bartusiak et al. (1989) 
and Bartee et al. (1989) have used the reference system synthesis 
technique to  design IMC-equivalent controllers for first- and 
second-order linear systems. However, no extensions for non- 
linear systems are presented. 

All the nonlinear controller design techniques discussed above 
incorporate some aspects of linear IMC. These methods, how- 
ever, d o  not represent a satisfactory extension of IMC to non- 
linear systems. In this article, a general extension of linear IMC 
to single-input, single-output nonlinear systems is presented. 
Like the nonlinear IMC approach of Economou et al. (1986), 
the proposed strategy is restricted to open-loop, stable systems 
with stable inverses. The new IMC approach, however, is much 
easier to implement than the method of Economou et al. (1986). 
To take advantage of recent results in nonlinear control theory 
(Isidori, 1989), a state-space approach is employed. A stable 
and implementable IMC controller is obtained by augmenting 
a model inverse controller with a nonlinear filter. Hence, the 
IMC controller can be represented analytically, and compu- 
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Figure 1. General structure of nonlinear internal model 
control. 

tationally-intensive numerical procedures are not required. A 
simple and useful characterization of model inverse stability 
is developed. Finally, the effects of disturbances are considered 
explicitly. For measured disturbances that satisfy a matching 
condition, feedforwardlfeedback controllers are constructed. 

An Internal Model Control Strategy for Nonlinear 
Systems 

We first consider the control of nonlinear single-input single- 
output systems without disturbances. Extensions for systems 
with disturbances are discussed later. Assume that the model 
M available for controller design has the form 

where 4 is an A-dimensional state vector, u is a scalar manip- 
ulated input, y” is a scalar controlled output, f ( 2 )  and g(2) 
are A-dimensional vector functions, and 6(2) is a scalar output 
function. 

The plant P is assumed to have the form, 

where x is an n-dimensional state vector, y is a scalar controlled 
output, and the nonlinear functions f ( x ) ,  g ( x ) ,  and h ( x )  are 
defined similarly to the functions in M.  Although M and P 
are affine (linear) in the manipulated input u,  the proposed 
IMC strategy can be extended to nonaffine models using the 
implicit function theorem (Henson and Seborg, 1990b). The 
functions, f ( x ) ,  g ( x ) ,  and h ( x ) ,  may differ from the corre- 
sponding functions in the model. Hence, the plant/model de- 
scription can include structural uncertainties and/or unmodeled 
dynamics. Even if the nonlinear functions are identical, the 
model state 2 may be different from the plant state x if the 
model is not properly initialized. 

As suggested by Economou et al. (1986), the nonlinear IMC 
structure can be represented as in Figure 1 where C is a non- 
linear controller and F is a robustness filter. The nonlinear 
IMC controller Q is defined as the composition of C and F: 

Q A  CF (3) 

The design of the nonlinear controller Cand filter Fis discussed 
in the following sections. 

Controller design 
As in linear IMC (Morari and Zafiriou, 1989), the first 

objective is to design the controller C such that the closed- 
loop system is stable if a perfect model is available (nominal 
stability). The nominal stability problem is considered in the 
section on the Properties of the Closed-Loop System. The next 
objective is to design C such that a performance criterion is 
satisfied if the model is perfect (nominal performance). Thus, 
the following assumption is invoked temporarily. 

Assumption I :  The model is perfect ( M = P ) .  Note that 
assumption 1 implies that f= f ,  g = g ,  K = h ,  and 4(O)=x(O). 
At this point, we assume that the filter is the identity operator: 
F= 1. In the following section, assumption 1 will be relaxed 
by augmenting C with the filter F. The controller C is chosen 
to minimize the tracking error, 

minlly,, ( t )  - y ( t )  I1 (4) 
C 

where I1 II represents a suitable norm andy,( t )  is the setpoint. 
The feedback signal to C, 

simplifies to e =ysp by assumption 1. Hence, the plant output 
can be expressed as: 

y = PCFe = MCysp (6) 

Using Eq. 6, the tracking error can be written as, 

and the optimization problem in Eq. 4 becomes: 

min I1 (1 - MC) ysp II (8) 
C 

The performance criterion in Eq. 8 is zero for any norm and 
any setpoint if the controller Cis chosen to be the right inverse 
of the model: 

C=M;’ (9) 

From Eq. 6 it is clear that this choice of C provides “perfect” 
control: y ( t )  =ysp ( t )  for all t > O .  

As in the nonlinear IMC approach of Economou et al. (1986), 
the model inverse is constructed using the method of Hirschorn 
(Hirschorn, 1979; Kravaris and Kantor, 1991a,b). To ensure 
that the model inverse is a well-defined dynamical system, a 
standard smoothness assumption is required (Boothby, 1986; 
Isidori, 1989). 

Assumption 2: The vector fields f ( 2 )  and g ( 4 )  and scalar 
field 6(4) are of class c“ (i.e., they have continuous deriv- 
atives of all order). Note that assumption 2 implies that all 
derivatives off”(*), 2(2), and fi(.f) are bounded. Fortunately, 
most systems of interest in process control satisfy assumption 
2. 
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At this point, it is useful to introduce some notation from 
differential geometry (Boothby, 1986; Kravaris and Kantor, 
1990a,b). The Lie derivative of a scalar function h"(2) with 
respect to a vector function f ( 2 )  is defined as: 

Higher-order Lie derivatives can be defined recursively as, 

where 

The input in Eq. 1 is said to have relative degree r at a point 
fa  if 

(i) ~ ~ ~ j h " ( 2 )  = o 
v x in a neighborhood of 2, and V k < r -  I (13) 

The relative degree represents the number of times the model 
output f must be differentiated with respect to time so that 
the input u appears explicitly. The relative degree of a linear 
system is the difference between the orders of the denominator 
and numerator polynomials. Hence, the relative degree pro- 
vides a measure of "properness." This property is exploited 
in the filter design discussed later. 

Unfortunately, some systems have singular points where the 
relative degree is not well defined (Isidori, 1989; Henson and 
Seborg, 1990a). To avoid singularities in the control law, the 
relative degree is assumed to be constant throughout the entire 
state space. 

Note that assump- 
tion 3 implies that the steady-state gain of the model cannot 
change sign. Although this assumption is not often stated ex- 
plicitly, it is required in almost all nonlinear control strategies 
based on exact linearization (Kravaris and Chung, 1987; Lee 
and Sullivan, 1988; Bartusiak et al., 1989). Recent results in- 
dicate that this assumption can be relaxed if the model is 
"approximately" inverted (Kappos, 1989; Lien and Wang, 
1990). 

By assumption 3, the first r time derivatives of the model 
output can be represented as: 

Assumption 3: LfLj-Ik(2) f O  v 2 d .  

where 

The Hirschorn inverse (1979) is obtained by solving Eq. 16 for 
the input u and substituting the result in Eq. 1 : 

Thus, the model inverse reconstructs the input u ( t )  from the 
rth derivative of the output y(') ( t )  . Note that the Hirschorn 
inverse is a nonminimal realization of the model inverse since 
it is an n-dimensional system. Minimal realizations can be also 
derived (Kravaris and Kantor, 1990a). To track the setpoint, 
the model inverse controller C can be chosen as in Eq. 19 with 
y$) as the input: 

The model inverse controller in Eq. 20 does not require state 
feedback from the plant since the model acts as an open-loop 
observer. The following assumption is required to ensure that 
the state estimates of the open-loop observer converge to the 
plant state if the observer is improperly initialized. 

Assumption 4: For every constant input u,, the model in 
Eq. I has a globally asymptoticaIly stable equilibrium point 
fa. Assumption 4 implies that each equilibrium point is stable 
and there is a single equilibrium point for each constant input. 
Hence, the proposed IMC strategy is restricted to open-loop, 
stable systems with a single steady state. 

Stability of the model inverse is an obvious requirement for 
the controller in Eq. 20 to be stable. In linear system theory, 
models with stable inverses are called minimum phase. A non- 
linear extension of the minimum-phase property is possible 
using the concept of zero dynamics (Isidori, 1989; Kravaris, 
1988; Henson and Seborg, 1991). For linear models the zero 
dynamics are the state-space analog of transfer function zeros 
(Isidori, 1989). The zero dynamics are usually obtained by 
transforming the model into normal form. 

The nonlinear model in Eq. 1 can be transformed into the 
normal form by a nonlinear change of coordinates. After the 
application of a suitable, nonlinear, static-state feedback con- 
trol law, the closed-loop system has the following form in the 
new coordinates (Isidori, 1989; Kravaris, 1988; Henson and 
Seborg, 1991): 

y =  C.$ (23) 

where .$ is a r-dimensional state vector, 7 is a (n-r)-dimensional 
state vector, v is a new input variable, (A, B, C) are in Bru- 
novsky canonical form, and q is a nonlinear function. The 
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zero dynamics are obtained by setting the state variables ( ( t )  = 0 
for all t 2 0: 

Note that the zero dynamics are unobservable from the model 
output and can affect only the internal stability of the closed- 
loop system. Stability of the zero dynamics is a necessary 
condition for a model inverse-based controller to yield an in- 
ternally stable closed-loop system. 

It is tempting to think that this condition is also sufficient 
because the t variables can be forced to zero arbitrarily fast 
(Byrnes and Isidori, 1985, 1989). In fact, this hypothesis is 
true if r = 1. However, it is not true in general because rapidly 
decaying variables can induce "peaking" and destroy closed- 
loop stability (Sussmann, 1990). Hence, a stronger condition 
is needed to ensure that the closed-loop system will remain 
stable as the t variables decay to zero. 

Assumption 5: The nonlinear subsystem in Eq. 22 has the 
bounded-input bounded-state (BIBS) property with respect to 
the .$ variables as inputs. If the model satisfies assumption 
5 ,  we say the model has a stable inverse. The characterization 
of systems that satisfy the BIBS property is an active area of 
research (Saberi et al., 1990; Sussmann and Kokotovic, 1991). 
The IMC strategy proposed in this article is restricted to non- 
linear models with stable inverses. 

If the model is perfect, Eqs. 16 and 20 yield: 

If the following initial conditions are satisfied 

then the model inverse controller provides perfect control as 
expected: 

Unfortunately, the model inverse controller in Eq. 20 is not 
suitable for implementation because: 

1. Perfect control usually requires unreasonably large con- 

2. The controller is not "proper" since it differentiates the 

3. The perfect model assumption is rarely satisfied in prac- 

4. The controller is unstable due to pole-zero cancellations 

trol actions. 

setpoint. 

tice. 

at the origin (Kravaris and Kantor, 1990a,b). 

The first three problems also occur in linear IMC when the 
model inverse is used directly as the controller (Morari and 
Zafiriou, 1989). The fourth problem occurs because the Hir- 
schorn inverse is nonminimal (Kravaris and Kantor, 1990a,b). 
As shown in the next section, these problems can be avoided 
by augmenting the model inverse controller with a nonlinear 
filter. 

Plant Controller Filter 

YO) 

Figure 2. Proposed structure for nonlinear internal 
model control. 

Filter design 
In linear IMC, the model inverse controller is augmented 

with a filter to obtain an implementable controller. The filter 
makes the IMC controller proper and provides a tuning pa- 
rameter that can be adjusted to account for plant/model mis- 
match. As shown below, the same approach can be used with 
the nonlinear model inverse controller in Eq. 20 if a nonlinear 
filter is employed. The filter makes the IMC controller Q 
proper by eliminating the need for derivatives and contains a 
single tuning parameter that provides a compromise between 
performance and robustness. If the model is perfect, input- 
output stability is guaranteed. When re-arranged into conven- 
tional feedback form, the IMC strategy yields a dynamic output 
feedback control law. Hence, state feedback from the plant is 
not required. 

The nonlinear filter F is chosen to have the following form: 

- . . . - a l f i ( Z ) +  a l e e A ( z ) + a l e  (28) 

where dr )  is the output of the filter, the [ a i )  are filter tuning 
parameters, and the error signal e is defined in Eq. 5 .  The 
model inverse controller C is obtained by modifying the input 
to the controller in Eq. 20: 

The IMC controller Q= CF is obtained by combining Eqs. 28 
and 29, 

where a,+ I 2 1. Unlike the model inverse controller in Eq. 20, 
the IMC controller Q is proper because it does not contain 
differentiations. The proposed IMC control scheme is shown 
schematically in Figure 2. 

Using Eq. 15, the filter in Eq. 28 can be represented as: 

If the following initial conditions are satisfied, 
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Dynamic Oulput Feedback 
Controller Plmt 

ti = a(Y) + p(n)fY,,-y) 

Figure 3. Conventional feedback representation of the 
proposed nonlinear IMC strategy. 

based on the contraction mapping principle and Newton's 
method are required to construct the inverse (Economou and 
Morari, 1985; Economou et al., 1986). This stability problem 
does not occur if the nonlinear filter in Eq. 28 i s  used instead 
of the linear filter in Eq. 36. As will be shown later, the stability 
analysis for the nonlinear IMC controller in Eq 30 is consid- 
erably simpler than that required for iterative numerical pro- 
cedures (Economou and Morari, 1985; Li et a1 , 1990). 

When rearranged into conventional feedback torm, the pro- 
posed nonlinear IMC strategy yields a dynamic output feed- 
back control law. This can be seen by substituting the filter F 
in Eq. 28 into the controller C in Eq. 29: 

then a closed-loop transfer function (CLTF) between the model 
output j and the error signal e can be obtained by combining 
Eqs. 16, 29, and 31: 

Note that the condition in Eq. 32 is equivalent to Eq. 26. If 
the controller parameters (a i )  are chosen appropriately (Hen- 
son and Seborg, 1990b), the CLTF can be written in terms of 
a single tuning parameter E :  

(34) 

The filter tuning parameter t can be tuned to provide a 
compromise between performance and robustness. It is easy 
to show that no control action is taken in the limit as E-m. 
As shown in the section on Properties of the Closed-Loop 
System, the IMC controller Q provides perfect control in the 
limit as e-0.  Hence, the filter tuning parameter E has a direct 
effect on closed-loop performance. The robustness of the pro- 
posed IMC strategy will be investigated via simulation study 
via in the section on the Simulation Study. If assumption 1 
holds, Eq. 34 becomes: 

(35) 

For a perfect model, the effect of the tuning parameter E on 
the closed-loop response is particularly simple. Small values 
of E result in vigorous responses, while large values cause slug- 
gish responses. If E > O  and ysp is bounded, the plant output is 
bounded. Hence, the closed-loop system is guaranteed to be 
input-output stable, if the model is perfect. Internal stability 
of the closed-loop system will be discussed later. 

The CLTF in Eq. 34 can be obtained using the nonlinear 
IMC method of Economou et al. (1986) if Eq. 29 with Y'') = e'" 
is used as the controller and a linear filter F is chosen as: 

1 
F ( s )  =- 

(ES + 1)' 

Because the linear filter does not affect the stability of the 
Hirschorn inverse, the resulting IMC controller is unstable 
(Kravaris and Kantor, 1990a,b). Thus, numerical procedures 

u = C (  2) + D ( 2 )  "4 ( 2 )  + a1 ( ysp - y + R (  2) ) 1 

Using Eq. 37, the process model in Eq. 1 can be represented 
as : 

Since the controller requires only the plant output y ,  state 
feedback from the plant is not required. This important ad- 
vantage of the proposed approach will be discussed later. The 
conventional feedback representation of the pr'oposed IMC 
scheme is shown in Figure 3.  

Since the nonlinear filter F in Eq. 28 has proportional action 
on the error e defined in Eq. 5, large control actions may be 
generated for step changes in the setpoint. To reduce the size 
of the control action, an additional setpoint filter may be 
employed. For example, a filtered setpoint j F p  can be obtained 
from a simple first-order filter with time constaut E :  

(39) 

Note that the filter in Eq. 39 does not affect closed-loop sta- 
bility. The error signal e is then defined in terms of Yxp instead 
of ysp. The CLTF for a perfect model in Eq. 35 becomes: 

Application to a linear process model 
In this section, the proposed nonlinear IMC stt ategy is ap- 

plied to a linear process model to compare it with the linear 
IMC design method. As in the nonlinear case, the SISO model 
is assumed to be open-loop stable and minimum phase. An 
IMC controller is first designed for a transfer function model 
using the standard approach of Morari and Zafiriou (1989). 
The proposed IMC strategy is then applied to a state-space 
realization of the transfer function model. The model inverse 
controllers and filters obtained using the transfer function and 
state-space methods are identical. Hence, for open-loop stable, 
minimum-phase linear systems, the two approaches are equiv- 
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alent. Unlike the transfer function approach, the proposed 
state-space strategy generalizes readily to nonlinear systems. 

Consider the following SISO transfer function model: 

The polynomials &(s) and 6(s) are Hurwitz by assumption. 
Note that the relative degree r is the difference between the 
orders of the denominator and numerator polynomials and 
r r O  if d(s) is proper. Because the model is open-loop stable 
and minimum phase, the model inverse controller is chosen as 
(Morari and Zafiriou, 1989): 

Note that C ( s )  is improper if r>O. An implementable con- 
troller is obtained by augmenting C ( s )  with an rth-order linear 
filter, 

1 
F ( s )  =- 

(es + 1)' (43) 

where E is the filter tuning parameter. The IMC controller 
Q(s)  is obtained by combining C ( s )  and F ( s )  as in Eq. 3: 

1 H(s )  1 
K b ( s )  (es+ 1)' 

Q ( s )  == 7 ___ (44) 

To apply the proposed IMC strategy, a linear state-space 
model is required, 

(45) 

where 2 is an n-dimensional state vector, A is an n x n matrix, 
i? is a n x 1 column vector, and c is a 1 x n row vector. Unlike 
the nonlinear model in Eq. 1, the linear model in Eq. 45 cannot 
have singular points. Hence, assumption 3 is not required and 
the relative degree in Eqs. 13 and 14 is defined as: 

Hence, the first r time derivatives of the model output in Eqs. 
15 and 16 can be written as: 

It follows from Eqs. 47 and 48 that the filter F i n  Eq. 28 and 
model inverse controller C in Eq. 29 are: 

The IMC controller Q in Eq. 30 is obtained by combining Eqs. 
49 and 50, 

k =  1 
U= CA-r - I B 

where a,+ I 1. 
If the proposed IMC strategy is applied to a state-space 

realization of the transfer function in Eq. 41, the IMC con- 
trollers in Eqs. 44 and 51 can be directly compared. It can be 
shown that the zero dynamics represent the dynamics of the 
inverse system (Isidori, 1989). Moreover, the IMC controllers 
obtained using the transfer function and state-space ap- 
proaches are equivalent. 

Theorem I :  If the transfer function model in Eq. 41 is open- 
loop stable and minimum phase, and the IMC controllers in 
Eqs. 44 and 51 have identical input-output behavior. The 
proof of theorem 1 is in the Appendix. Hence, the transfer 
function and state-space approaches are equivalent for open- 
loop stable, minimum-phase linear systems. As shown in the 
previous sections, the proposed state-space strategy readily 
generalizes to nonlinear systems. 

Properties of the closed-loop system 
Economou et al. (1986) have shown that the general non- 

linear IMC structure in Figure 1 possesses the same stability, 
perfect control, and zero offset properties as linear IMC (Mor- 
ari and Zafiriou, 1989). In this section, we show that under 
suitable assumptions the closed-loop system in Figure 2 satisfies 
analogous properties. The proofs of the four theorems pre- 
sented below are in the Appendix. 

Theorem 2: If E = 0, assumptions 2 and 3 hold, the condition 
in Eq. 26 is satisfied, and the plant and models outputs are 
bounded, then the IMC controller in Eq. 30 is a model inverse 
controller and perfect control is obtained. Since the con- 
troller takes no control action in the limit as E - m ,  theorem 
2 shows that the filter tuning parameter E has a direct effect 
on the closed-loop performance. Additionally, the proof of 
theorem 2 shows that the nonlinear filter in Eq. 28 reduces to 
U ( r )  = e ( r )  when E = 0. Thus, the filter provides the controller 
C in Eq. 29 with an "approximate" value of e"' when E > 0. 
In this sense, an improper model inverse controller can be 
approximated to any degree of accuracy by the proper con- 
troller in Eq. 30 by reducing the filter parameter e .  

Theorem 3: If assumptions 1-3 and assumption 5 are sat- 
isfied, ysp is bounded, and e > 0, then the IMC controller in 
Eq. 30 yields a closed-loop system that is internally stable and 
input-output stable. As discussed earlier, the zero dynamics 
must satisfy the BIBS property in assumption 5 to ensure that 
the closed-loop system is internally stable. 

Theorem 4: If the closed-loop system is asymptotically sta- 
Note ble, then the IMCcontroller in Eq. 30 eliminates offset. 
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Table 1 Nonlinear IMC vs. Exact I/O Linearizing Control 

Comparison 

Model Runs in 
Parallel? 

Need Plant State? 
Controller Type 
Integral Action 
CLTF if M f P  

Perfect Control if 

Limitations 
Q=M;'? 

Nonlinear IMC 
Exact I/O 
Linearization 

~ 

Yes 

No 
Dynamic output FB 
Implicit 
Y(s )  1 
e(s) -(Es+ 1)' 
Yes 

Open-loop stable 
systems with stable 
inverses 

No 

Yes 
Static state FB 
Explicit 
None 

No 

Systems with stable 
inverses 

that the asympotic stability assumption implies that the set- 
point and any disturbances are asymptotically constant. 

Theorem 5: If assumption 1 with X( 0 )  # x (  0 )  is satisfied, 
assumption 4 is satisfied, and u ( t )  = u, for  all t 2 0, then the 
model state converges asymptotically to the piant state. Note 
that theorem 5 requires that u is a constant (there is no feedback 
control). This assumption cannot be avoided since there is no 
general separation property for nonlinear systems (Isidori, 
1989). The proof of the theorem indicates that the state esti- 
mation error converges according to the open-loop dynamics 
of the process. This property and the open-loop stability re- 
quirement are the major disadvantages of a nonlinear open- 
loop observer. 

Comparison with input-output linearization 
Several controller design techniques based on exact input- 

output linearization have recently been developed for nonlinear 
process control (Kravaris and Chung, 1987; Lee and Sullivan, 
1988; Bartusiak et al., 1989; Henson and Seborg, 1990b). In 
this section, the proposed nonlinear IMC strategy is compared 
to input-output linearizing control. The IMC controller can 
be interpreted as the combination of an input-output linear- 
izing controller and an open-loop observer. Thus, an important 
advantage of the IMC approach is that full-state feedback is 
not required. The IMC strategy is also compared to input- 
output linearizing control strategies that employ open-loop 
observers. 

An input-output linearizing controller can be designed to 
have the form (Kravaris and Kantor, 1990b; Henson and 
Seborg, 1991), 

"I r+  1 

where the [ a;)  are tuning parameters and ar+ 4 1. If the model 
is perfect, the (a;) can be chosen to yield the following CLTF 
(Henson and Seborg, 1990b; Kravaris and Kantor, 1990b): 

(53) 

Note that Eqs. 52 and 53 are similar to the IMC controller Q 

and CLTF in Eqs. 30 and 35, respectively. However, there are 
several important differences between the two techniques. Most 
importantly, the linearizing controller in Eq. 52 requires full 
state feedback from the plant. Conversely, the IMC controller 
only requires the plant output since the model functions as an 
open-loop observer. Hence, the IMC controller can be inter- 
preted as the combination of an input-output linearizing con- 
troller and an open-loop observer. As shown in Figure 3, the 
IMC strategy yields a dynamic output feedback controller. The 
input-output linearization approach produces a static-state 
feedback controller (Kravaris and Kantor, 1990b; Henson and 
Seborg, 1991). 

The IMC approach implicitly includes integral action by 
using the difference between the plant and model outputs as 
a feedback signal. Conversely, an integral term must be added 
to the linearizing control law to ensure offset-free performance. 
As shown in Eq. 53, the integral term increases the relative 
degree of the closed-loop system. This can adversely affect the 
disturbance rejection properties of the nonlinear controller 
(Henson and Seborg, 1990b). Note that the CL'TF in Eq. 53 
was derived under the assumption of a perfect model. In con- 
trast to nonlinear IMC, a CLTF cannot be obtained for the 
input-output linearization approach if the model is imperfect. 
As shown in the proof of theorem 2, the CLTE' in Eq. 34 is 
essential in proving that the IMC strategy can provide perfect 
control even if the model is imperfect. 

Both techniques require assumptions 1-3 and assumption 5 
to ensure closed-loop stability. As shown in theorem 5 ,  a dis- 
advantage of the IMC approach is that open-loop unstable 
systems cannot be addressed. If nonlinear closed.loop observ- 
ers are employed in the IMC strategy, assumption 4 can be 
removed. Unfortunately, closed-loop observers can be de- 
signed for only a very limited class of nonlinear systems (Is- 
idori, 1989; Kantor, 1989). The comparison of the nonlinear 
IMC and input-output linearization techniques i q  summarized 
in Table 1. 

Dynamic output feedback controllers have also been de- 
signed by combining nonlinear open-loop observers and input- 
output linearizing controllers (Kravaris and C hung, 1987; 
Daoutidis and Kravaris, 1991). For open-loop stable systems, 
the controller design is based on the Hirschorn inverse, while 
a minimal inverse is employed for open-loop unstable systems. 
Although the control scheme can be interpreted from an IMC 
perspective, the IMC structure in Figure 1 is not used for 
controller design. Hence, the input-output linearization strat- 
egy does not enjoy many of the beneficial features, such as 
the perfect control property, of the proposed nonlinear IMC 
approach. Moreover, the controller proposed for open-loop, 
unstable systems usually contains derivatives of the output that 
may be problematic if the output is corrupted with high-fre- 
quency noise. The stability and performance of the input- 
output linearization strategy has been analyzed only when the 
model is perfect and the open-loop observer is perfectly ini- 
tialized. Under these conditions, the plant and model are iden- 
tical. Finally, limited simulation results for the input-output 
linearization scheme have been presented. 

Extensions for  nonlinear systems with measured dis- 
turbances 

In this section, the nonlinear IMC strategy is extended to 
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Figure 4. Continuous fermentor. 

nonlinear systems with measured disturbances. Assume that 
the SISO model M available for controller design has the form, 

where d is a g-dimensional vector of disturbances and a is a 
n x @ matrix of nonlinear functions. The plant P is assumed 
to have the form: 

X = f ( x )  + g ( x ) u + p ( x ) d  ( 5 5 )  
Y = h ( x )  

where d is a g-dimensional vector of disturbances and p is a 
n x q matrix of nonlinear functions. If the ith disturbance is 
measured, d, ( t )  = d , ( t ) .  The controller design strategy can be 
extended to models in which u and/or d appear nonlinearly 
(Henson and Seborg, 1990b). 

As in the disturbance-free case, the nominal performance 
criterion in Eq. 4 is minimized if the controller C is the right 
inverse of the model as in Eq. 9. However, the construction 
of the inverse is more complex than in the disturbance-free 
case. In analogy to Eqs. 13 and 14, the ith disturbance in Eq. 
54 is said to have relative degree p ,  at a point .fa if: 

(i) L ~ $ ' K ( z )  = o 
v x in a neighborhood of go and V k < p ,  - 1 (56) 

The relative effects of the manipulated input and disturbances 
on the model output can be characterized be defining the fol- 

lowing classes of disturbances (Daoutidis and Kravaris, 1989): 

The (r, and da disturbances pose no difficulties in the con- 
struction of the model inverse. However, the &, disturbances 
are problematic because they affect the output more directly 
than u. If the model contains de disturbances, the model inverse 
contains time derivatives of the disturbances (Daoutidis and 
Kravaris, 1989). To avoid such derivatives in the IMC control 
law, we assume that there are no de disturbances. 

Assumption 6: de = ( 0). If assumption 6 is not satisfied, 
derivatives in the control law can be avoided by using nominal 
values for the de disturbances. 

In analogy to the disturbance-free case, the filter is chosen 
as in Eq. 28 and the controller C is: 

Note that the da disturbances can be incorporated in the model 
in Eq. 54, while the &, disturbances can be used in the model 
and controller C in Eq. 59. If the initial conditions in Eq. 26 
are satisfied, the IMC controller Q in Eqs. 28 and 59 yields 
the CLTF in Eq. 34. As in the disturbance-free case, the filter 
parameter c can be tuned to provide a compromise between 
performance and robustness. If assumptions 1-5 are modified 
to account for the disturbances in Eq. 54, the closed-loop 
system satisfies the properties in a previous section. The non- 
linear IMC controller in Eqs. 28 and 59 is closely related to 
so-called disturbance decoupiing control laws (Hirschorn, 198 1 ; 
Isidori et al., 1981; Daoutidis and Kravaris, 1989; Henson and 
Seborg, 1990b). In fact, the IMC control law can be interpreted 
as the combination of a disturbance decoupling controller and 
a nonlinear open-loop observer. 

Simulation Study 
In this section, the proposed nonlinear IMC strategy is ap- 

plied to a continuous fermentor. The IMC approach is com- 
pared to a conventional PI controller and an input-output 
linearizing controller based on full state feedback. A schematic 
of a constant volume fermentor is shown in Figure 4. The 
dilution rate D and the feed substrate concentration S, are 
process inputs. The dilution rate is usually selected as the 
manipulated variable. If the effluent cell (biomass) concen- 
tration X ,  substrate concentration S, and product concentra- 
tion P are chosen as process state variables, the fermentor is 
described by three nonlinear ordinary differential equations 
(Agrawal et al., 1989), 
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Table 2 Nominal Fermentor Parameters and 
Operating Conditions 

Variable Nominal Value 

0.4 g/g 
2.2 g/g 
0.2 h -  
0.48 h ~ ' 
50 g/L 
1.2 g/L 
22 g/L 
20 g/L 
0.202 h - '  
6.0 g/L 
5.0 g/L 
19.14 g/L 

z 1 0 -  s 
9 

x (gn) 
Figure 5. Effect of (a) the dilution rate and (b) the cell 

concentration on the productivity for three pm 
values. 

(61) 
1 

Y X ,  

S=D(S , -S )  --pX 

where p is the specific growth rate, Yx,s is the cell-mass yield, 
and cy and P are kinetic parameters. The specific growth rate 
may exhibit both substrate and product inhibition, 

where Eq. 63 contains four parameters: the maximum specific 
growth rate p,, the product saturation constant P,, the sub- 
strate saturation constant K,, and the substrate inhibition con- 
stant K;. For many fermentations, the maximum specific growth 
rate p, and cell-mass yield Yx,s exhibit significant time-varying 
behavior and can, therefore, be viewed as unmeasured dis- 
turbances (Henson and Seborg, 1990a). 

For most continuous fermentations, the control objective is 
to maximize the steady-state productivity Q. If the biomass is 
the desired product, a can be defined as the amount of biomass 
produced per unit time, 

where the overbar represents a steady-state value. As shown 
in Figure 5a, small pm disturbances may have a dramatic effect 
on the optimum productivity. Moreover, the dilution rate re- 
quired to obtain the optimum productivity also varies signif- 
icantly with p,. Conversely, Figure 5b demonstrates that the 
cell concentration X corresponding to the optimum produc- 
tivity is essentially constant despite changes in p,. Similar 
behavior for YxIs indicates that near optimal productivity can 
be achieved by regulating X at a constant value. 

Since the cell concentration often can be measured or esti- 
mated (Johnson, 1987), the biomass X i s  a reasonable choice 
for the controlled output. Although direct productivity control 
is possible (Henson and Seborg, 1990a), Figure 5a indicates 
that the productivity setpoint must be carefully chosen to en- 
sure that it is near-optimal and feasible. Nominal parameters 
and operating conditions (Agrawal et al., 1989) used for the 
simulations are listed in Table 2 and indicated by the dashed 
lines in Figure 5 .  The open-loop responses shown in Figure 6 
indicate that the fermentor exhibits significant static and dy- 
namic nonlinear behavior in the region of operation. If the 
state variables, manipulated input, disturbance, and controlled 
output are defined as 

A A x =  [X S PIT, u = D ,  d h p ,  or d h  Yx/s, y AX, (65) 

the process P can be represented by Eq. 55. The model M in 
Eq. 54 used for controller design may differ from P in a variety 
of ways. For instance, the specific growth rate p of the model 
can be a simple Monod expression (Agrawal et al., 1989; John- 
son, 1987) instead of Eq. 63. Several types of modeling error 
are considered in the simulations. 

The fermentation model satisfies most of the assumptions 
described earlier. The smoothness and regularity conditions in 
assumptions 2 and 3 are satisfied in the desired region of 
operation. Simulation results indicate that the zero dynamics 
satisfy the BIBS property in assumption 5 .  Since the relative 
degree of input r = 1, the matching condition in assumption 6 
is trivially satisfied. The model, however, can exhibit multiple 
steady states (Henson and Seborg, 1990a), so the open-loop 
stability condition in assumption 4 is not always satisfied. 
Moreover, for most of simulations presented below, the perfect 
model condition in assumption 1 does not hold. Despite these 
difficulties, the nonlinear internal model controller can be de- 
signed as described earlier. 

For comparison, three controllers were designed: a conven- 
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Figure 6. Open-loop cell concentration responses for 
step changes in the dilution rate. 

tional PI controller, an input-output (I/O) linearizing con- 
troller based on full state feedback, and a nonlinear internal 
model controller (NIMC) controller. The PI controller param- 
eters were initially determined using internal model control 
tuning rules (Morari and Zafiriou, 1989) for two first-order 
models obtained from the responses in Figure 6. In each case, 
the IMC closed-loop time constant r, was chosen to be one- 
third the open-loop time constant. The parameters were then 
fine-tuned to provide a compromise between the two setpoint 
responses in Figure 7a. The resulting PI controller parameters 
K ,  = - 0.07 L/g . h and 7, = 4.5 h were used in all simulations. 

I I I I I 
0 10 20 30 40 

Time ( h )  

1, A 

0 26 

1- Nonlinear IMC( 

0 22 
T 

I Serpoint = 7 0 giL 

Serpoint = 5 &'L 

I I I I 
10 20 30 40 

Time ( h )  

Figure 7. Step changes in the setpoint: (a) cell concen- 
tration and (b) dilution rate. 

6 05 I I , I 

- Nonlinear IMC 
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5 75 

Time (h) 

Time (h) 

Figure 8. pm disturbance: (a) cell concentration and (b) 
dilution rate. 

Because the disturbances in Eq. 65 are assumed to be unmea- 
surable, the I/O linearizing controller has the form in Eq. 52, 
while the IMC controller has the form in Eqs. 28 and 29. For 
both nonlinear controllers, the closed-loop time constant E = 1 
h was used in all simulations. This value is about one-third 
the open-loop time constant for the - 10% dilution rate change 
in Figure 6. 

Setpoint responses for the PI controller and NIMC are shown 
in Figure 7a. In this case, the I/O linearizing controller is 
equivalent to the NIMC since the model is assumed to be 
perfect. The performance of the PI controller and NIMC is 
very similar. Figure 7b shows that the two controllers require 
about the same amount of control action to accomplish the 
setpoint changes. Hence, the controllers have been tuned to 
provide equal setpoint responses. In subsequent simulations, 
the disturbance rejection capabilities of the three controllers 
will be analyzed using the tuning parameters determined for 
the setpoint changes in Figure 7. 

In Figure 8, the three controllers are compared for an un- 
measured step disturbance of - 12.5% in the maximum growth 
rate pm occurring at t = 0. Since p = 1 and the disturbance can- 
not be measured, the I/O linearizing controller cannot decou- 
ple the disturbance from the output. However, Figure 8a 
indicates that the I/O linearizing controller provides the best 
disturbance rejection since it uses all three state variables. For 
the PI controller and NIMC that require only the plant output 
X ,  the NIMC is clearly superior. The control moves shown in 
Figure 8b are similar for the three controllers. 

In Figure 9a, the three controllers are compared for a - 20% 
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Figure 9. YxIs disturbance: (a) cell concentration and (b) 
IMC state estimates. 

step disturbance in the cell-mass yield YxIs occurring at t = 0. 
Since r =  1, the model is perfect (except for the disturbance), 
and p = 2 for this disturbance, the I/O linearizing controller 
provides perfect disturbance decoupling. Conversely, the NIMC 
cannot decouple the disturbance from the output since it uses 
the state estimates from the model. However, the NIMC rejects 
the disturbance much better than does the PI controller. In 
Figure 9b, the actual and estimated values of X and P are 
shown. Despite the significant errors in the X and P estimates, 

6 05 I I I I I 

I75  I I I 1 I I 

Figure 10. Cell concentration responses for a pm dis- 
turbance when the model contains an error 
in the growth rate expression. 

5 10 I5 2u 25 30 

Time (h) 

3 

Figure 11. Cell concentration responses for a YxIs dis- 
turbance when the model contains an error 
in the growth rate expression. 

the NIMC is able to provide excellent control. Note that the 
NIMC rejects the Y,, disturbance slightly better than the pm 
disturbance. This is expected since p is larger for the Y,, 
disturbance (Henson and Seborg, 1990a). 

Figures 10 and 11 show the performance of the three con- 
trollers for the same disturbances in Figures 8 and 9, respec- 
tively, except that the model contains a structural error in the 
growth rate: 

The Monod expression in Eq. 66 can be obtained from Eq. 63 
by setting P ,  = 03 and K ,  = 03. Since this modeling error does 
not affect the process, the PI controller responses do not change 
from Figures 8a and 9a. For the pm disturbance in Figure 10, 
the I/O linearizing controller provides the best disturbance 
rejection. Although the NIMC response is oscillatory, it is 
superior to that of the PI controller. Somewhat surprisingly, 
the NIMC outperforms the I/O linearizing controller for the 
YxIs disturbance in Figure 11. In fact, the NIMC response is 
much better than that in Figure 9a when no modeling error 
(except for the disturbance) is present. This example indicates 
that the disturbance decoupling property of the I/O linearizing 
controller is not always important since it requires a perfect 
model. These two disturbances indicate that the NIMC is quite 
robust to structural modeling errors. 

To further evaluate the NIMC, the model was simplified so 
that the process contained unmodeled dynamics. Existing ro- 
bustness theory for nonlinear process control (Kravaris and 
Palanki, 1988) cannot address this type of plant/model mis- 
match. In particular, the model was simplified using slow man- 
ifold theory (Marino and Kokotovic, 1988). If a system starts 
on a manifold and evolves on that manifold for a certain period 
of time, the manifold is said to be invariant to the flow of the 
system. It is easy to show that if the fermentot is initially as 
steady state and p = 0, 

P-aX=O (67) 

is an invariant manifold. Because fi  = 0.2 h-' ,  the manifold in 
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Figure 12. Cell concentration responses for a pm dis- 
turbance when only the cell concentration 
dynamics are modeled. 
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Eq. 67 is not actually invariant. However, slow manifold theory 
indicates that the fermentor converges “quickly” to a manifold 
“near” Eq. 67. Hence, the condition in Eq. 67 holds in an 
approximate sense when /3 is nonzero, but small. If the fer- 
mentor is initially at steady state and Y,, is constant, 

1 s,- s - -x= 0 
y x ,  

is also an invariant manifold. If the Y,,, disturbances are small, 
the condition in Eq. 68 holds in an approximate sense. The 
model used to design the NIMC was Eqs. 60 and 63 where the 
estimates of P and S were obtained from the algebraic equa- 
tions in Eqs. 67 and 68, respectively. 

The NIMC based on the reduced-order model was evaluated 
for the same disturbances used in Figures 8a and 9a. The results 
for the p,,, disturbance are shown in Figure 12 along with the 
responses of the PI and I/O linearizing controllers in Figure 
8a. Since the process is unchanged and the 1/0 linearizing 
controller is based on full-scale feedback, the responses of 

\ ,  , ,  .._,‘ 
I I I 181  
20 40 N) 80 

Time (h) 

Figure 13. Cell concentration responses for a YxIs dis- 
turbance when only the cell concentration 
dynamics are modeled. 

these two controllers are not changed by the unmodeled dy- 
namics. Although the NIMC response is s!ightly oscillatory, 
it is still superior to the PI controller response. In fact, the 
NIMC is comparable to the I/O linearizing controller based 
on full-state feedback. The three controllers are compared for 
the Yx, disturbance in Figure 13. As in Figure 8a, the 1/0 
linearizing controller perfectly decouples the output and the 
disturbance. Despite the unmodeled dynamics, the NIMC is 
clearly superior to the PI controller. These results indicate that 
the NIMC is robust to unmodeled dynamics. The simulation 
results demonstrate that the NIMC is able to provide excellent 
control if significant modeling errors are present. 

Conclusions 
An internal model control strategy has been developed for 

nonlinear single-input single-output systems. Unlike other non- 
linear control techniques that incorporate IMC concepts, the 
proposed approach is a general extension of linear IMC to 
open-loop, stable, nonlinear systems with stable inverses. The 
controller is based on the inverse of the process model and a 
nonlinear filter is added to make the controller implementable 
and to account for modeling errors. An important advantage 
of the new approach is that the assumption of full-state feed- 
back inherent in most input-output linearization schemes is 
eliminated. Under reasonably mild assumptions, the closed- 
loop system possesses the same stability, perfect-control, and 
zero-offset properties as linear IMC. A linear process model 
was used to compare the new approach to linear IMC, and 
extensions for nonlinear systems with disturbances were pro- 
posed. Simulation results for a continuous fermentor dem- 
onstrate that the nonlinear IMC strategy is superior to 
conventional PI control and compares favorably to input-out- 
put linearizing control based on full-state feedback. 

Notation 
a =  
b =  
c =  
d =  
D =  
e =  

f t g  = 
G =  
h =  
K =  
K .  = 

K ,  = 
L:h = 

Mr-l = 
P =  
Q =  

P, = 
r =  
s =  
s, = 
t =  
u =  
v =  
x =  
x =  
Y =  

Y s p  = 

denominator polynomial of transfer function 
numerator polynomial of transfer function 
controller 
disturbance vector 
dilution rate 
error signal 
vector fields 
transfer function 
output function 
steady-state gain 
substrate inhibition constant 
substrate saturation constant 
kth order Lie derivative of h with respect to f 
right inverse of the process model 
product concentration 
productivity 
product saturation constant 
relative degree of the manipulated input 
substrate concentration 
feed substrate concentration 
time 
manipulated input 
output of the filter 
state vector 
cell concentration 
controlled output 
setpoint 
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ysp = filtered setpoint 
Y,,$ = cell-mass yield 

Greek letters 
a, fi  = kinetic parameters for fermentor 
a, = controller tuning parameters 

E = filter time constant 

pi = relative degree of the ith disturbance 
p = growth rate 

7, ( = transformed state variables 

pm = maximum growth rate 

Subscripts 
o = constant value 

Superscripts 
- = model 
- = steady-state value 
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Appendix 
Proof of theorem 1 

To compare the IMC controllers in Eqs. 44 and 5 1, a state- 
space realization of the transfer function in Eq. 41 is required. 
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A particularly convenient minimal realization of G(s) is the 
companion form (Kailath, 1980; Isidori, 1989): 

We first show that the model inverse controllers in Eqs. 42 
and 50 obtained from the transfer function and state-space 
approaches, respectively, have identical input-output behavior. 
The following relationship between the state variables can be 
obtained from the A matrix in Eq. A l :  

From Eq. A2 it follows that: 

Hence, the state A?l is related to the input u as: 

Using the state-space realization in Eqs. A1 and A2, the 
derivatives in Eqs. 47 and 48 have the form: 

From Eqs. A3 and A7 it follows that: 

s'y(s)=[6@sr+61s'+'+ * .  . +6n-,-Is"-1]21(s) 
-[fio+dls+ +&n-Is"-1]21(s)+xu 

=s'[6(s) -s"-']P1(s) - [ d ( s )  -s"]al(S) + x u  

= [s'6(s) - 6(s)]2, (s) + x u  (A81 

The Laplace transform of the model inverse controller in Eq. 
50 with zero initial conditions can be obtained by setting the 
righthand side of Eq. A8 equal to s'v (s) and solving for u (s) : 

u ( s )  = - 
s'6(s) -&(s) 1 

R K 2,(s) +T;s 'v(s) ('49) 

Equation A5 can be used to eliminate (s): 

If Eq. A10 is solved for u ( s ) ,  Eq. 42 is obtained. Since the 
result is independent of the state-space realization, the model 
inverse controllers obtained from the transfer function and 
state-space design strategies have identical input-output be- 
havior. 

We now show that the filters in Eqs. 43 and 49, obtained 
from the transfer function and state-space approaches, re- 
spectively, have identical input-output behavior. Let a poly- 
nomial a ( s )  be defined as: 

Then by using Eq. 47, the Laplace transform of the filter in 
Eq. 49 with zero initial conditions can be written as: 

Using Eqs. 41 and 42, the filter can be represented as: 

The filter tuning parameters { aI ) can be chosen (Henson and 
Seborg, 1990b) to yield the transfer function in Eq. 43. Since 
the result is independent of the state-space realization, the 
filters obtained from the transfer function and state-space de- 
sign strategies have identical input-output behavior. Thus, the 
IMC controllers Q derived from the transfer function and state- 
space design strategies have identical input-output behavior 
and have the form in Eq. 44. 0 

Proof of theorem 2 

CLTF in Eq. 34 holds. If E = 0, Eq. 34 reduces to: 
Since the condition in Eq. 26 is satisfied by assumption, the 

y ( t )  = e ( t ) = r ( t ) - y ( t ) + f ( t )  (A 14) 

Because J (  t )  is bounded by assumption, perfect control [i.e., 
y ( t )  = r ( t )  V t r O ]  is obtained as claimed. We now show that 
if E = 0, the IMC controller Q in Eq. 30 reduces to the model 
inverse controller in Eq. 20 with e"' as the input. Using Eqs. 
1, 29, and A14, the closed-loop system can be represented as 
follows if E = 0: 

Taking the first time derivative of e yields: 
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LjL( 2) 
L,L;-- 'L(2) e =L#i(P) - Lg6(a )  

u"'=Lj6(2) (A17) 
1 + L&( a)  

LgL;-- I K ( f )  

since L&(P) = 0 by assumption 3. The second derivative of e 
is: 

since LgLj6(f) = O  by assumption 3. The procedure can be 
continued to show that: 

The characteristic polynomial of Eq. A21 is a ( s )  in Eq. 
A1 1. Since E > 0 by assumption, a ( s )  is Hurwitz (Henson and 
Seborg, 1990~). Thus, the ( state variables are bounded because 
ysp is assumed to be bounded. Since the ( state variables are 
bounded, the 9 state variables are bounded by assumption 5 .  
The boundedness of the ( and 7 state variables and assumption 
2 imply that the original 3 state variables are bounded (Isidori, 
1989). The output 9 is bounded by Eq. A22. By assumption 
2, the functions L j 6 ( f ) ,  krO,  are bounded. Hence, d r )  in 
Eq. 28 is bounded because e = y ,  by assumption 1 and y ,  
is bounded. By assumption 3, the function LgLj-'6(2) is 
bounded away from zero. Thus, u in Eq. 29 is bounded. Hence, 
all signals are bounded and the closed-loop system is internally 
and input-output stable. 

Proof of theorem 4 

assumption: 
Because the closed-loop system is asymptotically stable by 

Thus, the rth derivative is: 

It follows from Eqs. 15  and 16 that in the limit as t - w :  

Hence, the IMC controller Q in Eq. 30 reduces to the model 
inverse controller in Eq. 20 with e"' as the input. The model 

0 inverse controller is well defined by assumption 2. 

Proof of theorem 3 
By assumption 1 ,  the plant is identical to the model. Hence, 

the objective is to show that the control law in Eq. 30 yields 
a stable closed-loop system when applied to the model (plant) 
in Eq. 1. Using assumptions 2 and 3, it can be shown that 
there exists a nonlinear change of coordinates such that the 
closed-loop system comprising Eqs. 1 and 30 can be represented 
as follows (Henson and Seborg, 1991), 

0 1 0 . * .  0 
0 1 . * .  0 

. ... . 
0 0 0 . . .  1 

-011 -012 -013 . . .  - a r  

where ( and 7 are new r-dimensional and (n-r)-dimensional 
state vectors, respectively. 

Hence, d r )  ( t )  = 0 in the limit as t -  00 by Eq. 29. From Eq. 
28 it follows that in the limit as t - w :  

By the definition of &(a)  in Eq. 2 and e in Eq. 5 ,  it follows 
that: 

Hence, the control law in Eq. 30 eliminates offset. 0 

Proof of theorem 5 
By assumption, the model and plant dynamics in Eqs. 1 and 

2, respectively, are identical except for the initial conditions. 
Since u ( t )  = u, V t 2 O  by assumption, the dynamics can be 
represented as: 
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where .fo#xo. Without loss of generality, assume that xo=O 
is an equilibrium point of Eq. A29. Then, x ( t )  = O  v t r O  by 
assumption 4. If the state estimation error is defined as 

rium point of the error dynamics in Eq. A31. Hence, the state 
estimation error decays asymptotically to  zero, 

ex 4 2- x ,  the error dynamics are: limIlY(t) -x(t)lI=O ('432) 
1--m 

. . .  
ex = .f - x = F ( Y )  = F( ex + x )  = F ( e x )  ('431) as claimed. 

By assumption 4, 0 is a globally asymptotically stable equilib- Manuscript received Oct. I ,  1990, and revision received May 29, 1991. 
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